GNU bug report logs - #24117
25.1; url-http-create-request: Multibyte text in HTTP request

Previous Next

Package: emacs;

Reported by: Sho Takemori <stakemorii <at> gmail.com>

Date: Sun, 31 Jul 2016 08:28:02 UTC

Severity: normal

Found in version 25.1

Done: Dmitry Gutov <dgutov <at> yandex.ru>

Bug is archived. No further changes may be made.

Full log


View this message in rfc822 format

From: Sho Takemori <stakemorii <at> gmail.com>
To: Eli Zaretskii <eliz <at> gnu.org>
Cc: 24117 <at> debbugs.gnu.org
Subject: bug#24117: 25.1; url-http-create-request: Multibyte text in HTTP request
Date: Mon, 1 Aug 2016 08:21:39 +0900
[Message part 1 (text/plain, inline)]
It seems that anaconda-mode use two global variables (url-request-method
and url-request-data)
to make generate the request.

https://github.com/proofit404/anaconda-mode/blob/master/anaconda-mode.el#L349

url-request-method is bound to an ASCII string "POST".
In my situation, url-request-data is bound to a unibyte string as below.

"{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"eldoc\",\"params\":{\"source\":\"#
-*- coding: utf-8 -*-\\nimport itertools\\nfrom itertools import
groupby\\n\\nfrom sage.all import mul\\nfrom sage.arith.all import
kronecker_symbol\\nfrom sage.functions.all import ceil, floor, sgn\\nfrom
sage.matrix.all import (block_diagonal_matrix, block_matrix,\\n
                diagonal_matrix, identity_matrix, matrix)\\nfrom
sage.misc.all import cached_function\\nfrom sage.quadratic_forms.all import
QuadraticForm, least_quadratic_nonresidue\\nfrom sage.rings.all import QQ,
ZZ, CyclotomicField, FiniteField, PolynomialRing\\n\\n\\ndef
_index_of_gamma_0_gl_n(alpha, p):\\n    '''\\n    Returns delta(a1, ...,
an) defined in Shimura, Euler products and Eisenstein\\n    series, pp 118,
(15.1.7).\\n    '''\\n    if p in ZZ:\\n        p = ZZ(p)\\n\\n    def
_bn(n):\\n        return mul(1 - p ** (-i) for i in xrange(1, n + 1))\\n\\n
   e_r_ls = [(k, len(list(v)))\\n              for k, v in
groupby(sorted(alpha), lambda x: x)]\\n    res = _bn(len(alpha)) /
mul(_bn(r) for _, r in e_r_ls)\\n    for i, (ei, ri) in
enumerate(e_r_ls):\\n        for j, (ej, rj) in enumerate(e_r_ls):\\n
     if i < j:\\n                res *= p ** ((ej - ei) * ri * rj)\\n
 return res\\n\\n\\ndef _gl2_coset_gamma0(a, p):\\n    w = matrix([[0,
-1],\\n                [1, 0]])\\n    for m12 in range(p ** a):\\n
 yield matrix([[1, m12],\\n                      [0, 1]])\\n    for m21 in
range(p ** (a - 1)):\\n        m = matrix([[1, 0],\\n                    [p
* m21, 1]])\\n        yield w * m\\n\\n\\ndef _gl3_coset_gamma0(alpha,
p):\\n    r'''\\n    Let alpha = [a0, a1, a2] with a0 <= a1 <= a2,\\n    g
= diag([p^a0, p^a1, p^a2]), and Gamma0 = g^(-1) GL3(Z) g \342\210\247
GL3(Z).\\n    Return a complete set Gamma0 \\\\ GL3(Z).\\n    '''\\n    if
p in ZZ:\\n        p = ZZ(p)\\n    a0, a1, a2 = alpha\\n    if a0 < a1 <
a2:\\n        return list(__gl3_coset_gamma0_distinct(a0, a1, a2, p))\\n
 elif a0 == a1 and a1 < a2:\\n        return
list(__gl3_coset_gamma0_2_1(a0, a2, p))\\n    elif a0 < a1 and a1 == a2:\\n
       return list(__gl3_coset_gamma0_1_2(a0, a2, p))\\n    elif a0 == a1
== a2:\\n        return [identity_matrix(ZZ, 3)]\\n    else:\\n
 raise ValueError\\n\\n\\ndef __gl3_coset_gamma0_2_1(a1, a3, p):\\n    w23
= matrix([[1, 0, 0],\\n                  [0, 0, 1],\\n                  [0,
1, 0]])\\n    for m13 in range(p ** (a3 - a1 - 1)):\\n        for m23 in
range(p ** (a3 - a1 - 1)):\\n            m = matrix([[1, 0, p * m13],\\n
                     [0, 1, p * m23],\\n                        [0, 0,
1]])\\n            yield m\\n\\n    for m32 in range(p ** (a3 - a1)):\\n
     m = matrix([[1, 0, 0],\\n                    [0, 1, 0],\\n
       [0, m32, 1]])\\n        for g in _gl2_coset_gamma0(a3 - a1, p):\\n
         n = block_diagonal_matrix(g, matrix([[1]]))\\n            yield
w23 * m * n\\n\\n\\ndef __gl3_coset_gamma0_1_2(a1, a2, p):\\n    w12 =
matrix([[0, 1, 0],\\n                  [1, 0, 0],\\n                  [0,
0, 1]])\\n\\n    for m12 in range(p ** (a2 - a1 - 1)):\\n        for m13 in
range(p ** (a2 - a1 - 1)):\\n            m = matrix([[1, p * m12, p *
m13],\\n                        [0, 1, 0],\\n                        [0, 0,
1]])\\n            yield m\\n    for m21 in range(p ** (a2 - a1)):\\n
 m = matrix([[1, 0, 0],\\n                    [m21, 1, 0],\\n
     [0, 0, 1]])\\n        for g in _gl2_coset_gamma0(a2 - a1, p):\\n
     n = block_diagonal_matrix(matrix([[1]]), g)\\n            yield w12 *
m * n\\n\\n\\ndef __gl3_coset_gamma0_distinct(a1, a2, a3, p):\\n\\n    w12
= matrix([[0, 1, 0],\\n                  [1, 0, 0],\\n                  [0,
0, 1]])\\n\\n    w23 = matrix([[1, 0, 0],\\n                  [0, 0, 1],\\n
                 [0, 1, 0]])\\n\\n    w13 = matrix([[0, 0, 1],\\n
       [0, 1, 0],\\n                  [1, 0, 0]])\\n\\n    w123 =
matrix([[0, 1, 0],\\n                   [0, 0, 1],\\n                   [1,
0, 0]])\\n\\n    w132 = matrix([[0, 0, 1],\\n                   [1, 0,
0],\\n                   [0, 1, 0]])\\n\\n    # w = 1\\n    for m12 in
range(p ** (a2 - a1 - 1)):\\n        for m13 in range(p ** (a3 - a1 -
1)):\\n            for m23 in range(p ** (a3 - a2 - 1)):\\n
 yield matrix([[1, p * m12, p * m13],\\n                              [0,
1, p * m23],\\n                              [0, 0, 1]])\\n    # w =
(12)\\n    for m13 in range(p ** (a3 - a2 - 1)):\\n        for m21 in
range(p ** (a2 - a1)):\\n            for m23 in range(p ** (a3 - a1 -
1)):\\n                m = matrix([[1, 0, p * m13],\\n
       [m21, 1, p * m23],\\n                            [0, 0, 1]])\\n
           yield w12 * m\\n    # w = (23)\\n    for m12 in range(p ** (a3 -
a1 - 1)):\\n        for m13 in range(p ** (a2 - a1 - 1)):\\n            for
m32 in range(p ** (a3 - a2)):\\n                m = matrix([[1, p * m12, p
* m13],\\n                            [0, 1, 0],\\n
   [0, m32, 1]])\\n                yield w23 * m\\n\\n    # w = (13)\\n
 for m21 in range(p ** (a3 - a2)):\\n        for m31 in range(p ** (a3 -
a1)):\\n            for m32 in range(p ** (a2 - a1)):\\n                m =
matrix([[1, 0, 0],\\n                            [m21, 1, 0],\\n
                 [m31, m32, 1]])\\n                yield w13 * m\\n\\n    #
w = (123)\\n    for m21 in range(p ** (a3 - a1)):\\n        for m23 in
range(p ** (a2 - a1 - 1)):\\n            for m31 in range(p ** (a3 -
a2)):\\n                m = matrix([[1, 0, 0],\\n
 [m21, 1, p * m23],\\n                            [m31, 0, 1]])\\n
       yield w123 * m\\n    # w = (132)\\n    for m12 in range(p ** (a3 -
a2 - 1)):\\n        for m31 in range(p ** (a2 - a1)):\\n            for m32
in range(p ** (a3 - a1)):\\n                m = matrix([[1, p * m12, 0],\\n
                           [0, 1, 0],\\n                            [m31,
m32, 1]])\\n                yield w132 * m\\n\\n\\nclass
HalfIntMatElement(object):\\n\\n    def __init__(self, T):\\n        '''\\n
       :params T: half integral matrix of size 3 or a list\\n        '''\\n
       if isinstance(T, list):\\n            a, b, c, d, e, f = [ZZ(x) for
x in T]\\n            mat = matrix([[a, f / 2, e / 2],\\n
       [f / 2, b, d / 2],\\n                          [e / 2, d / 2,
c]])\\n        else:\\n            mat = T\\n        self.__entries =
tuple(mat.list())\\n\\n    def __eq__(self, other):\\n        if
isinstance(other, HalfIntMatElement):\\n            return self.__entries
== other.__entries\\n        else:\\n            raise
NotImplementedError\\n\\n    def __repr__(self):\\n        return
self.T.__repr__()\\n\\n    def __hash__(self):\\n        return
hash(self.__entries)\\n\\n    @property\\n    def T(self):\\n        return
matrix(3, self.__entries)\\n\\n    def right_action(self, g):\\n
 '''\\n        :param g: matrix of size n\\n        return self[g]
(Siegel's notation)\\n        '''\\n        S = g.transpose() * self.T *
g\\n        return HalfIntMatElement(S)\\n\\n    def
satisfy_cong_condition_tp(self, p, alpha):\\n        '''\\n        Test if
sum_{B mod D} exp(2pi T B D^(-1)) is zero, where D = diag(p^a1, p^a2,
a^a3),\\n        a1, a2, a3 = alpha.\\n        '''\\n        return
(all(ZZ(self.T[i, i]) % p ** alpha[i] == 0 for i in range(3)) and\\n
         all(ZZ(self.T[i, j] * 2) % p ** alpha[i] == 0\\n
 for i in range(3) for j in range(i + 1, 3)))\\n\\n    def
is_divisible_by(self, m):\\n        '''\\n        Test if self is divisible
by m\\n        :param m: integer\\n        '''\\n        return
_half_int_mat_is_div_by(self.T, m)\\n\\n    def __floordiv__(self,
other):\\n        S = matrix(QQ, 3)\\n        for i in range(3):\\n
   S[i, i] = ZZ(self.T[i, i]) // other\\n        for i in range(3):\\n
       for j in range(i + 1, 3):\\n                S[i, j] = S[j, i] =
(ZZ(self.T[i, j] * 2) // other) / 2\\n        return
HalfIntMatElement(S)\\n\\n\\ndef alpha_list(dl):\\n    '''\\n    Return a
list of (a0, a1, a2) with 0 <= a0 <= a1 <= a2 <= dl\\n    '''\\n    return
[(a0, a1, a2) for a0 in range(dl + 1)\\n            for a1 in range(a0, dl
+ 1) for a2 in range(a1, dl + 1)]\\n\\n\\ndef tp_action_fourier_coeff(p, T,
F):\\n    '''\\n    Return the Tth Fourier coefficient of F|T(p), where F
is a modular form.\\n    :param p: a prime number\\n    :param T: a half
integral matrix or an instance of HalfIntMatElement\\n    :param F: a
dictionary or a Siegel modular form of degree 3\\n    '''\\n    p =
ZZ(p)\\n    return _action_fc_base(tp_action_fc_alist(p, T), F,
T)\\n\\n\\ndef tp2_action_fourier_coeff(p, i, T, F):\\n    '''\\n
 Similar to tp_action_fourier_coeff for T_i(p^2).\\n    '''\\n    p =
ZZ(p)\\n    return _action_fc_base(tp2_action_fc_alist(p, T, i), F,
T)\\n\\n\\ndef _action_fc_base(ls, F, T):\\n    if not isinstance(T,
HalfIntMatElement):\\n        T = HalfIntMatElement(T)\\n    res = 0\\n
 for s, a, g in ls:\\n        res = a * F[s].left_action(g) + res\\n
 return res\\n\\n\\ndef hecke_eigenvalue_tp(p, F, T=None):\\n    '''\\n
 p, F, T: same as aruments of tp_action_fourier_coeff.\\n    Assuming F is
an eigenform, return the eigenvalue for T(p),\\n    T is used for the
computation of Fourier coefficients.\\n    If T is omitted, T will be set
to\\n    matrix([[1, 1/2, 1/2], [1/2, 1, 1/2], [1/2, 1/2, 1]]).\\n
 '''\\n    return _hecke_eigenvalue_base(lambda s:
tp_action_fourier_coeff(p, s, F), F, T=T)\\n\\n\\ndef
hecke_eigenvalue_tp2(p, i, F, T=None):\\n    '''\\n    Similar to
hecke_eigenvalue_tp for T(p^2).\\n    '''\\n    return
_hecke_eigenvalue_base(lambda s: tp2_action_fourier_coeff(p, i, s, F), F,
T=T)\\n\\n\\ndef spinor_l_euler_factor(p, F, t=None, T=None):\\n    '''\\n
   F: a dict or Siegel modular form of degree 3.\\n    Return a polynomial
G(t) of degree 8, s.t.\\n    G(p^(-s))^(-1) is the p-Euler factor of the
spinor L function of F.\\n    '''\\n    p = ZZ(p)\\n    if t is None:\\n
     t = PolynomialRing(QQ, 1, names='t',
order=\\\"neglex\\\").gens()[0]\\n    c = {}\\n    tp =
hecke_eigenvalue_tp(p, F, T=T)\\n    tpp1, tpp2, tpp3 =
[hecke_eigenvalue_tp2(p, i, F, T=T) for i in [1, 2, 3]]\\n    c[0] =
ZZ(1)\\n    c[1] = tp\\n    c[2] = p * (tpp1 + (p**2 + 1) * tpp2 + (p**2 +
1)**2 * tpp3)\\n    c[3] = p**3 * tp * (tpp2 + tpp3)\\n    c[4] = p**6 *
(tp**2 * tpp3 + tpp2**2 - 2 * p * tpp1 * tpp3 -\\n                   2 * (p
- 1) * tpp2 * tpp3 -\\n                   (p**6 + 2 * p**5 + 2 * p**3 + 2 *
p - 1) * tpp3**2)\\n    c[5] = p**6 * tpp3 * c[3]\\n    c[6] = p**12 * tpp3
** 2 * c[2]\\n    c[7] = p**18 * tpp3 ** 3 * c[1]\\n    c[8] = p**24 * tpp3
** 4\\n    return sum((-1)**k * v * t**k for k, v in c.items())\\n\\n\\ndef
rankin_convolution_degree1(f, g, p, name=None):\\n    u'''\\n    f, g:
primitive forms of degree 1 and level 1.\\n    Return p-euler factor of the
Rankin convolution of f and g as\\n    a polynomial.\\n    '''\\n    k1 =
f.weight()\\n    k2 = g.weight()\\n    ap = f[p]\\n    bp = g[p]\\n    t =
PolynomialRing(QQ, 1, names='t' if name is None else name,\\n
        order=\\\"neglex\\\").gens()[0]\\n    return (1 - ap * bp * t +\\n
           (ap**2 * p**(k2 - 1) + bp**2 * p**(k1 - 1) - 2 * p**(k1 + k2 -
2)) * t**2 -\\n            ap * bp * p**(k1 + k2 - 2) * t**3 + p**(2 * (k1
+ k2 - 2)) * t**4)\\n\\n\\ndef _hecke_eigenvalue_base(fc_func, F,
T=None):\\n    if T is None:\\n        T =
HalfIntMatElement(matrix([[ZZ(1), ZZ(1) / ZZ(2), ZZ(1) / ZZ(2)],\\n
                             [ZZ(1) / ZZ(2), ZZ(1), ZZ(1) / ZZ(2)],\\n
                                 [ZZ(1) / ZZ(2), ZZ(1) / ZZ(2),
ZZ(1)]]))\\n    if not isinstance(T, HalfIntMatElement):\\n        T =
HalfIntMatElement(T)\\n    v1 = fc_func(T).vector\\n    v = F[T].vector\\n
   if v == 0:\\n        raise ZeroDivisionError\\n    else:\\n        i =
next(i for i in range(len(v)) if v[i] != 0)\\n        return v1[i] /
v[i]\\n\\n\\n <at> cached_function\\ndef tp_action_fc_alist(p, T):\\n    '''\\n
   return a list of tuples (S, a, g) s.t.\\n    S: an instance of
HalfIntMatElement\\n    a: integer\\n    g: 3 by 3 matrix s.t.\\n    F|T(p)
= sum(a rho(g) F[S] | (a, g, S)).\\n    '''\\n    res1 = []\\n    for alpha
in alpha_list(1):\\n        D = diagonal_matrix([p ** a for a in alpha])\\n
       for V in _gl3_coset_gamma0(alpha, p):\\n            M = D * V\\n
       S = T.right_action(M.transpose())\\n            if
S.is_divisible_by(p):\\n                S = S // p\\n                if
S.satisfy_cong_condition_tp(p, alpha):\\n                    # p**(-6) and
p in the third item are for normalization.\\n
 res1.append(\\n                        (S, p ** (-6) * mul(p ** alpha[i]
for i in range(3) for j in range(i, 3)),\\n                         M **
(-1) * p))\\n    return
__convert_reduced_nonisom_matrices(res1)\\n\\n\\ndef
__convert_reduced_nonisom_matrices(alst):\\n    red_res = []\\n    for s,
a, g in alst:\\n        u = _minkowski_reduction_transform_matrix(s.T)\\n
     t = s.right_action(u)\\n        red_res.append((t, a, g *
u.transpose() ** (-1)))\\n\\n    non_isoms = []\\n\\n    for s, a, g in
red_res:\\n        q = QuadraticForm(ZZ, 2 * s.T)\\n        u = None\\n
   for t, _, _ in non_isoms:\\n            q1 = QuadraticForm(ZZ, 2 *
t.T)\\n            if q.det() == q1.det():\\n                u =
q.is_globally_equivalent_to(q1, return_matrix=True)\\n                if u
and u.transpose() * q.Gram_matrix_rational() * u ==
q1.Gram_matrix_rational():\\n                    break\\n        if u:\\n
         non_isoms.append((s.right_action(u), a, g * u.transpose() **
(-1)))\\n        else:\\n            non_isoms.append((s, a, g))\\n
 return non_isoms\\n\\n\\n <at> cached_function\\ndef tp2_action_fc_alist(p, T,
i):\\n    '''\\n    similar to tp_action_fc_alist for T_i(p^2) for i = 0,
1, 2, 3.\\n    '''\\n    res1 = []\\n\\n    for alpha in alpha_list(2):\\n
       D = diagonal_matrix([p ** a for a in alpha])\\n        for V in
_gl3_coset_gamma0(alpha, p):\\n            M = D * V\\n            S =
T.right_action(M.transpose())\\n            if S.is_divisible_by(p **
2):\\n                S = S // (p ** 2)\\n                res1.append((S, p
** (-12) * _expt_sum(S, p, alpha, i),\\n                             M **
(-1) * p ** 2))\\n\\n    return __convert_reduced_nonisom_matrices([(a, b,
c) for a, b, c in res1 if b != 0])\\n\\n\\ndef _nearest_integer(x):\\n    r
= floor(x)\\n    if x - r > 0.5:\\n        return r + 1\\n    else:\\n
   return r\\n\\n\\ndef _gaussian_reduction(b1, b2, S):\\n    '''\\n    b1,
b2: vectors of length 3\\n    S: symmetric matrix of size 3\\n    '''\\n
 while True:\\n        nb1 = b1 * S * b1\\n        nb2 = b2 * S * b2\\n
   if nb2 < nb1:\\n            b1, b2 = b2, b1\\n        x = (b2 * S * b1)
/ (b1 * S * b1)\\n        r = _nearest_integer(x)\\n        a = b2 - r *
b1\\n        if a * S * a >= b2 * S * b2:\\n            return (b1, b2)\\n
       else:\\n            b1, b2 = a, b1\\n\\n\\ndef _sym_mat_gen(p,
n):\\n    if n == 1:\\n        for a in range(p):\\n            yield
matrix([[a]])\\n    else:\\n        for s in _sym_mat_gen(p, n - 1):\\n
       ls = [range(p) for _ in range(n)]\\n            for a in
itertools.product(*ls):\\n                v = matrix([a[:-1]])\\n
     yield block_matrix([[s, v.transpose()], [v,
matrix([[a[-1]]])]])\\n\\n\\ndef _gen_gauss_sum_direct_way(N, p, r):\\n
 res = 0\\n    K = CyclotomicField(p)\\n    zeta = K.gen()\\n    for S in
_sym_mat_gen(p, N.ncols()):\\n        if
S.change_ring(FiniteField(p)).rank() == r:\\n            res += zeta ** ((N
* S).trace())\\n    try:\\n        return QQ(res)\\n    except
TypeError:\\n        return res\\n\\n\\ndef _generalized_gauss_sum(N, p,
r):\\n    if r == 0:\\n        return 1\\n    if p == 2:\\n        return
_gen_gauss_sum_direct_way(N, p, r)\\n    else:\\n        N_mp =
N.change_ring(FiniteField(p))\\n        d, _, v = N_mp.smith_form()\\n
   t = d.rank()\\n        N1 = (v.transpose() * N_mp *\\n
 v).matrix_from_rows_and_columns(range(t), range(t))\\n        eps =
kronecker_symbol(N1.det(), p)\\n        return _gen_gauss_sum_non_dyadic(p,
eps, N.ncols(), t, r)\\n\\n\\ndef _half_int_mat_is_div_by(S, m):\\n    n =
S.ncols()\\n    return (all(ZZ(S[i, i]) % m == 0 for i in range(n)) and\\n
           all(ZZ(2 * S[i, j]) % m == 0 for i in range(n) for j in range(i
+ 1, n)))\\n\\n\\n <at> cached_function\\ndef _gen_gauss_sum_non_dyadic(p, eps,
n, t, r):\\n    '''\\n    cf. H. Saito, a generalization of Gauss sums\\n
 '''\\n\\n    def parenthesis_prod(a, b, m):\\n        if m == 0:\\n
     return 1\\n        else:\\n            return mul(1 - a * b ** i for i
in range(m))\\n\\n    if (n - t) % 2 == 0:\\n        m = (n - t) // 2\\n
 else:\\n        m = (n - t + 1) // 2\\n\\n    if n == r:\\n        if n %
2 == 1:\\n            return ((-1) ** ((n - 2 * m + 1) // 2) * p ** ((n **
2 + (2 * m) ** 2 - 1) // 4) *\\n                    parenthesis_prod(p **
(-1), p ** (-2), m))\\n        elif n % 2 == t % 2 == 0:\\n
 return ((-kronecker_symbol(-1, p)) ** ((n - 2 * m) // 2) *\\n
       eps * p ** ((n ** 2 + (2 * m + 1) ** 2 - 1) // 4) *\\n
     parenthesis_prod(p ** (-1), p ** (-2), m))\\n        else:\\n
   return 0\\n    else:\\n        diag = [1 for _ in range(t)]\\n        if
eps == -1:\\n            diag[-1] = least_quadratic_nonresidue(p)\\n
 diag = diag + [0 for _ in range(n - t)]\\n        N =
diagonal_matrix(diag).change_ring(FiniteField(p))\\n        return
_gen_gauss_sum_direct_way(N, p, r)\\n\\n\\ndef _expt_sum(S, p, alpha,
i):\\n    '''\\n    Return the exponential sum in Miyawaki's paper, where
alpha[-1] <= 2, for T_i(p^2).\\n    '''\\n    a, b, c = [alpha.count(_i)
for _i in range(3)]\\n    S33 = S.T.matrix_from_rows_and_columns(range(a +
b, 3), range(a + b, 3))\\n    S22 =
S.T.matrix_from_rows_and_columns(range(a, a + b), range(a, a + b))\\n
 S32 = S.T.matrix_from_rows_and_columns(range(a + b, 3), range(a))\\n\\n
 if c > 0 and not _half_int_mat_is_div_by(S33, p ** 2):\\n        return
0\\n    if c > 0 and b > 0 and any(x % p != 0 for x in (S32 *
ZZ(2)).change_ring(ZZ).list()):\\n        return 0\\n\\n    if b == 0 and a
+ c == 3 - i:\\n        return p ** (c * (c + 1))\\n    elif b == 0:\\n
   return 0\\n    else:\\n        return p ** (c * (c + 1)) * p ** (b * c)
* _generalized_gauss_sum(S22, p, b - i)\\n\\n\\ndef
_minkowski_reduction(b1, b2, b3, S):\\n\\n    def inner_prod(x, y):\\n
   return x * S * y\\n\\n    while True:\\n        b1, b2, b3 = sorted([b1,
b2, b3], key=lambda b: b * S * b)\\n\\n        b1, b2 =
_gaussian_reduction(b1, b2, S)\\n\\n        b11 = inner_prod(b1, b1)\\n
   b12 = inner_prod(b1, b2)\\n        b13 = inner_prod(b1, b3)\\n
 b22 = inner_prod(b2, b2)\\n        b23 = inner_prod(b2, b3)\\n        b33
= inner_prod(b3, b3)\\n\\n        y1 = - (b13 / b11 - b12 * b23 / (b11 *
b22)) / \\\\\\n            (1 - b12 ** 2 / (b11 * b22))\\n        y2 = -
(b23 / b22 - b12 * b13 / (b11 * b22)) / \\\\\\n            (1 - b12 ** 2 /
(b11 * b22))\\n\\n        # Find integers x1, x2 so that norm(b3 + x2 * b2
+ x1 * b1) is minimal.\\n        a_norms_alst = []\\n\\n        for x1 in
[floor(y1), ceil(y1)]:\\n            for x2 in [floor(y2), ceil(y2)]:\\n
             a = b3 + x2 * b2 + x1 * b1\\n
 a_norms_alst.append((x1, x2, a, inner_prod(a, a)))\\n        _inner_prod_a
= min(x[-1] for x in a_norms_alst)\\n        x1, x2, a, _ = next(x for x in
a_norms_alst if x[-1] == _inner_prod_a)\\n\\n        if _inner_prod_a >=
b33:\\n            # Change sings of b1, b2, b3 and terminate the
alogrithm\\n            sngs = [sgn(b12), sgn(b13), sgn(b23)]\\n
 bs = [b1, b2, b3]\\n            try:\\n                # If b12, b13 or
b23 is zero, change sgns of b1, b2, b3 so that\\n                # b12,
b13, b23 >= 0.\\n                zero_i = sngs.index(0)\\n
 set_ls = [set([1, 2]), set([1, 3]), set([2, 3])]\\n                t =
set_ls[zero_i]\\n                _other = [x for x in [1, 2, 3] if x not in
t][0]\\n                for x in t:\\n                    i =
set_ls.index(set([x, _other]))\\n                    if sngs[i] < 0:\\n
                   bs[x - 1] *= -1\\n                b1, b2, b3 = bs\\n
       except ValueError:\\n                # Else change sgns so that b12,
b13 > 0\\n                if b12 < 0:\\n                    b2 = -b2\\n
           if b13 < 0:\\n                    b3 = -b3\\n            return
(b1, b2, b3)\\n        else:\\n            b3 = a\\n\\n\\ndef
_minkowski_reduction_transform_matrix(S):\\n    '''\\n    Return a
unimodular matrix u such that u^t * S * u is reduced in Minkowski's
sense.\\n    '''\\n    b1, b2, b3 = identity_matrix(QQ, 3).columns()\\n
 c1, c2, c3 = _minkowski_reduction(b1, b2, b3, S)\\n    return matrix([c1,
c2,
c3]).transpose()\\n\",\"line\":52,\"column\":41,\"path\":\"/home/sho/work/sage_packages/e8theta_degree3/hecke_module.py\"}}"

The file contains a multibyte string "∧" and anaconda-mode converts it to
"\342\210\247".

Sho Takemori


2016-07-31 23:31 GMT+09:00 Eli Zaretskii <eliz <at> gnu.org>:

> > From: Sho Takemori <stakemorii <at> gmail.com>
> > Date: Sun, 31 Jul 2016 17:26:37 +0900
> >
> > I got an error "error in process sentinel: url-http-create-request:
> Multibyte text in HTTP request" when I visited a
> > Python file which contains a multibyte character with
> `anaconda-eldoc-mode' turned on.
>
> That file name should have been encoded by the time it is passed to
> url-http.el, so the problem should not have happened, because encoded
> strings are unibyte strings.
>
> > At first, I thought this was a bug of anaconda-mode. So I opened an
> issue in github
> > (https://github.com/proofit404/anaconda-mode/issues/189).
> >
> > I guess `(= (string-bytes request) (length request))` in
> `url-http-create-request' should be `(= (string-bytes
> > url-http-data) (length url-http-data))`, because `(= (string-bytes
> request) (length request))` may be `nil' even if
> > `(= (string-bytes url-http-data) (length url-http-data))` is `t'.
>
> I don't think I agree in general: all the strings that are used by
> url-http-create-request should be unibyte strings.  if they all are
> unibyte strings, then I think the situation you describe should not
> happen.  However, you didn't provide enough details to analyze the
> situation, so perhaps I'm missing something.  Could you please show
> all the details, specifically, what were the values of the various
> variables used by url-http-create-request to generate the request?
> For each value that is a string, please also tell whether it's a
> unibyte or a multibyte string.
>
> Thanks.
>
[Message part 2 (text/html, inline)]

This bug report was last modified 8 years and 12 days ago.

Previous Next


GNU bug tracking system
Copyright (C) 1999 Darren O. Benham, 1997,2003 nCipher Corporation Ltd, 1994-97 Ian Jackson.